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Abstract

The flow around an infinitely long circular cylinder at Reynolds numbers between 5pRep250 is investigated

numerically by means of a spectral element method. Careful studies of the effect of resolution and extension of the

computational domain on drag and lift forces, base-pressure coefficient and Strouhal number are performed in the

laminar, two-dimensional regime. Asymptotic results are obtained by increasing the size of the computational domain

to several thousands of cylinder diameters. It is shown that, in contrast to the Strouhal number, the force coefficients

and the base-pressure coefficient are strongly dependent on the resolution and even more on the size of the

computational domain. For both the asymptotic and finite domains, the Reynolds number relationships are compared

to numerical and experimental data from the literature. The results accurately reproduce experimental findings and

explain deviations of former numerical investigations. Our database is useful both for validation of numerical codes and

measurement verifications where the separation of physical features and effects of experimental arrangements are

frequently an open question.

r 2006 Elsevier Ltd. All rights reserved.

Keywords: Circular cylinder; Two-dimensional flow; Asymptotic solution
1. Introduction

The flow around an unconfined circular cylinder of infinite length is a classical problem of fluid dynamics. Despite the

simple geometry, the cylinder flow shows many phenomena in a relatively small range of Reynolds numbers that also

occur in more complex cases. Examples are flow separation, the primary instability with development of the unsteady von

Kármán vortex street, transition to three-dimensionality with interaction of ‘mode A’ and ‘mode B’ instabilities, the

occurrence of turbulence in the wake, and the Kelvin–Helmholtz instability of the separated shear layer. The cylinder flow

has been investigated for more than one century, starting with fundamental work of Strouhal (1878) on the dependency

between frequency of vortex shedding, free-stream velocity, and cylinder diameter. Other experiments, including those by

Wieselsberger (1921), Roshko (1954), Tritton (1959), and Berger (1964), revealed qualitative and quantitative features of
e front matter r 2006 Elsevier Ltd. All rights reserved.
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the flow at low Reynolds numbers. Numerical investigations, starting from steady and two-dimensional, aimed at

validating the measured results. Extensive reviews can be found in Braza et al. (1986) and Lange (1997).

A strong revival of interest on flow around a cylinder could be noted at the end of last century in the form of

extensive experimental and numerical investigations. In particular, better experimental techniques allowed a deeper

insight into the structure of the cylinder wake. Influences from the cylinder ends, length-to-diameter ratio, free-stream

turbulence, blockage, vibrations, and three-dimensional effects were identified to cause the large scatter in earlier

experimental results (Gerich and Eckelmann, 1982; Williamson, 1989, 1992; Norberg, 1994).

Numerical works were first targeted at steady cylinder flows to calculate the drag, pressure and velocity (resp.

vorticity) distributions, as well as the separation lengths. Later, with the expansion to unsteady simulations, time-

dependent quantities including the Strouhal number were determined. Mostly, only a few selected Reynolds numbers

were investigated. Extensive studies on resolution as well as blockage effects, i.e. the ratio of domain extension and

cylinder diameter, were not carried out, since computer capacity was strongly limited in the past. The main interest was

frequently a validation and demonstration of new computer codes and techniques and not the accurate computation of

flow quantities. From that, the large scatter in the available database can be explained.

Examples for analyzes of the influence of computational domain extensions on the drag at low Reynolds numbers can

be found in Fornberg (1980), Behr et al. (1995), Anagnostopoulos et al. (1996), Lange (1997), and Kravchenko et al.

(1999). Fornberg (Re ¼ 20), Behr et al. (Re ¼ 100), Anagnostopoulos et al. (Re ¼ 106) as well as Kravchenko et al.

(Re ¼ 100) concentrated on one Reynolds number, whereas Lange investigated the flow around a circular cylinder at

very low Reynolds numbers (Reo10). On the other hand, Rosenfeld (1994) and Yang et al. (1994) varied the number of

grid points but retained a fixed size domain. Persillon and Braza (1998) varied, both the number of grid points and the

domain extension; however, this was accomplished simultaneously.

Numerous experimental as well as numerical works dealt with the Reynolds number dependency of flow quantities like the

base-pressure coefficient and the Strouhal number. Newer examples on the experimental side can be found in Williamson

(1989, 1992) or Norberg (1994). On the numerical side, Reynolds number dependencies of the Strouhal number and the

base-pressure coefficient, that can easily be used to compare with experimental results, are computed together with the drag

and lift forces that cannot be measured accurately. Examples can be found in Franke et al. (1990) and Yang et al. (1994),

where only steady results were given. Henderson (1995) published two-dimensional results for the variation of drag

components and the base-pressure coefficient with Reynolds number in the form of curve-fits. However, because of the small

domain extension, results are not grid independent. A similar work was published by Park et al. (1998), where the flow

quantities at Reynolds numbers between 2 and 160 are given. Blockage effects are diminished compared to the work of

Henderson because of a larger domain extension. Since the domain-independence has been investigated by looking at the

Strouhal number in most numerical works, considerable errors can result in flow quantities like lift, drag, and especially the

base-pressure coefficient, because the Strouhal number is least effected by the domain size (see Section 4).

In this paper, two-dimensional numerical simulations of the flow around a circular cylinder at Reynolds numbers

between 5 and 250 using a spectral element method are presented. Details of the code are shown in Section 2. One of the

qualities of this global discretization scheme is the simplicity of grid refinement, e.g. improvement of resolution, by

increasing the order of polynomial basis within the spectral elements. Resolution as well as extension of the

computational domain are varied systematically and separately to receive domain-independent flow quantities. Because

the independence from the domain extension seems to be an arbitrary assumption of the different authors, asymptotic

solutions were searched by using extremely large domain sizes. This was accomplished for the steady regime as shown in

Section 3, as well as for the unsteady cylinder flow in Section 4. The effect of domain extension is shown for the drag,

base-pressure coefficient, lift, and Strouhal number (the two last-mentioned only in the unsteady case). The domain

dependency of flow quantities is given as polynomial approximations and compared to data from literature.

Finally, two sizes of the computational domain are used to determine the Reynolds number relationship of the flow

quantities in the steady and unsteady regime, as shown in Section 5. The results of the present work are compared to

experimental as well numerical data. In Section 6 the Strouhal–Reynolds number relationship is investigated. For it, a

new formulation of curve fitting is proposed and compared to traditional polynomial approximations.
2. Numerical procedure

We consider Newtonian, incompressible, and time-dependent flows with constant properties governed by the

Navier–Stokes equations written in nondimensional form,

qu

qt
þNðuÞ ¼ rpþ

1

Re
r2u in O, (1)
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r � u ¼ 0 in O, (2)

where uðx; y; tÞ is the velocity field and pðx; y; tÞ the pressure field, and t is the nondimensional time. The variables are

nondimensionalized by the free-stream velocity U1 and the cylinder diameter D. The Reynolds number Re is defined as

Re ¼ U1D=n with n the kinematic viscosity. The term NðuÞ in Eq. (1) represents the nonlinear advection operator, here

used in rotational form

NðuÞ ¼
1

2
rðu � uÞ � u� r� u. (3)

Time discretization is performed by means of a three-step splitting scheme of order J, with J up to third order

introduced in Karniadakis et al. (1991), where the nonlinear terms are computed explicitly, while the pressure and

viscous corrections are treated implicitly. The two-dimensional domain ðx; yÞ is partitioned into K spectral elements.

Within each element, a high-order polynomial basis represents the solution as well as the geometry. This basis can be

constructed as a product of one-dimensional Gauss–Lobatto–Legendre polynomials to form the discrete solution.

Thus, the two-dimensional field is described by KN2 numbers, where N is the number of basis coefficients or polynomial

order in each direction. Besides the fast convergence and high accuracy of global spectral methods, intensive use is made

of the simplicity of grid refinement by increasing the order of polynomial basis. Further details of the code can be found

in Henderson and Karniadakis (1995).

Although a physically unconfined cylinder is considered, the discretized equations require finite boundaries in the far-

field. First, some fundamental length definitions are introduced to characterize the extension of domain boundaries that

are responsible for the ubiquitous blockage effects. The definition of inflow length, distance of upper/lower boundaries

and output length are shown in Fig. 1. The calculations have been performed on a mesh with a semicircular inflow

boundary. So, the inflow length Li and length of upper/lower boundary Lb are equal. The blockage ratio H=D ¼ 2Lb=D

is frequently used to characterize the effects of domain extensions, neglecting the action of a finite inflow length in

rectangular domains. We will use the definitions Li=D, Lb=D, Lo=D throughout this work.

Fig. 2 shows a mesh with K ¼ 186 spectral elements and an order of polynomial basis with N ¼ 4. The number of

elements and its location around the cylinder surface were tested intensively. Results from calculations with a very large

number of elements and low order of polynomial basis were compared to those with few elements and large polynomial

orders. We did not observe quantitative differences, but a mesh with a medium number of elements was chosen for

computational efficiency reasons. The outflow length was set to a constant value of Lo ¼ 50D after tests in the unsteady

flow regime, in order to avoid an effect of unphysical reflections from the outflow boundary on the solution. The inflow

length Li resp. the length of the upper/lower boundary Lb were varied in the present work between Lbji ¼ 20D and

Lbji ¼ 4000D. For Lbji ¼ 20D; 40D; 70D and 120D, a mesh with K ¼ 186 spectral elements was chosen. The inner mesh

remained constant, whereas the boundary location was expanded. In the case of higher domain extensions, additional

elements are grouped around the outer boundary. Therefore, the number of spectral elements was K ¼ 246, 306, and

396 for Lbji ¼ 500D, 2000D, and 4000D, respectively. A computational time step of dt ¼ 0:005 was used in all
L
b

Li

D

H

Lo

Fig. 1. Definition of domain extensions.
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Fig. 2. Spectral elements (above) and mesh near the cylinder (below) for N ¼ 4 as used in this study: Lbji ¼ 20D, Lo ¼ 50D.
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computations. Doubling the time step did not change the results. The small step size was chosen because of stability

requirements at higher Reynolds numbers.

Boundary conditions are the no-slip condition (u ¼ 0, v ¼ 0) at the surface of the cylinder and outflow (ðn � rÞu ¼ 0)

downstream from the cylinder. The pressure is set to zero at the outflow boundary, along the other boundaries a high-

order pressure condition of Neumann type is used to control divergence errors introduced by the splitting scheme

(Karniadakis et al., 1991). Free stream (u ¼ 1, v ¼ 0) is applied to the inflow, top, and bottom boundaries. These

boundary conditions are critical to blockage effects. Some type of asymptotic boundary conditions (Fornberg, 1980;

Dennis, 1976) would guarantee a satisfying solution for finite boundaries located closer to the cylinder surface. Since

highly sophisticated boundary conditions are difficult to implement and to recommend to similar investigations, we

restrict our study to the simpler free-stream boundary condition. Tests with a potential flow solution as boundary

condition showed that the solution is only remarkably influenced if the blockage is very high (Anagnostopoulos et al.,

1996). The potential flow solution is not accurate enough to result in a proper reflection of cylinder flow. If the inflow

and upper/lower boundary lengths are large, the potential flow solution passes into the free-stream values.

Boundary conditions seem to have a minor significance in order to prevent blockage effects. The mixture of Dirichlet

and von Neumann boundary conditions qu=qy ¼ 0, v ¼ 0 at upper/lower domain boundaries used in Persillon and

Braza (1998) was not able to lessen blockage compared to the simple free-stream condition applied in this study.

The accuracy of numerical results is compared by means of integral quantities like drag and lift forces, the base-

pressure coefficient and the Strouhal number. The forces on a cylinder are defined as follows:

FðtÞ ¼

I
ð�pnþ nðruþru>Þ � nÞds. (4)

Using the free-stream velocity U1, density r, and the diameter D, drag and lift coefficients are written as

CD ¼
FD

ð1=2ÞrU2
1D

; CL ¼
FL

ð1=2ÞrU2
1D

. (5)

A frequently considered quantity is the nondimensional pressure at the rear stagnation point, called ‘base-pressure’ or

‘base-suction’ coefficient �Cpb
. The base-pressure coefficient is easier to measure than forces in the low Reynolds

number regime as considered here, so it is used to compare measurements and numerics. Generally, the base-pressure

coefficient is defined as

Cpb
¼

P� P1

ð1=2ÞrU2
1

, (6)
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where in the case of an unsteady flow regime (Re447) the mean value has to be used. Experimentalists measure

the pressure at the rear stagnation point and the inflow conditions to get the base-pressure coefficient. The

determination from simulations is less straightforward. The free-stream velocity U1 is given as boundary condition

and the pressure at the rear stagnation point is read from the data field, but a correct definition of P1 is difficult.

Different forms to involve the reference pressure are used in the literature. Henderson (1995) and most other

authors use the pressure at the inflow boundary Pinlet, whereas Braza et al. (1986) the pressure at the front stagnation

point P0. The latter definition is probably used in Persillon and Braza (1998). Both definitions are strongly

dependent on blockage effects, because the pressure at the inlet as well as at the front stagnation point adjusts to the

distance of the inlet boundary. Therefore, two sources of deviations exist for the base-pressure coefficient in small

computational domains.

The most frequently used flow quantity is the nondimensional frequency of vortex shedding in the unsteady flow

regime, defined by

St ¼
fD

U1
. (7)

The vortex shedding frequency f can be measured easily compared to forces or pressures.

Numerous curve-fits are given in the paper in order to quantify the dependency of flow quantities from the domain

extension or from the Reynolds number. The accuracy of curve-fits is estimated by means of the mean deviation e and
maximum deviation emax as defined by

e ¼
1

N

XN

i¼1

jCcalc � Cfitj, (8)

emax ¼ jCcalc � Cfitjmax. (9)

The general coefficient C stands for drag, lift, base-pressure coefficients, and Strouhal number, as the case may be.
3. Asymptotic solution in the steady regime

In order to find an asymptotic solution for the flow around an infinitely long circular cylinder, the computational

domain was extended stepwise from Lbji ¼ 20D up to Lbji ¼ 4000D as described in Section 2. The resolution was

improved by increasing the polynomial order from N ¼ 6 to 14. Since the domain size and the resolution were varied

independently, it could be studied how both quantities affect the flow parameters. In the steady regime (Reo47), three

Reynolds numbers (Re ¼ 5; 20; 40) were investigated closer to check grid independence of the solution.

The procedure of establishing grid independence will be made clear with the example of Re ¼ 20. Fig. 3 (inset) shows

how the drag coefficient changes with the order of polynomial basis if the domain size is hold fixed. The different curves

correspond to the domain extension of Lbji ¼ 20D–4000D. It can be seen easily that the drag remains constant for

NX10 at all domain extensions. Furthermore, the influence of the resolution is weaker than the errors that result from

the blockage effect. However, the spectral elements are strongly tightened near the cylinder wall, so results are accurate

even if a low polynomial order is used.

After the proof that the drag is independent on the number of grid points, the dependency of the drag coefficient on

the domain extension was investigated as shown in Fig. 3 (large view). It should be noted that the domain size is plotted

in logarithmic scale. It is aimed to find an asymptotic or at least close to asymptotic solution. The drag coefficient grows

exponentially with decreasing domain size. If the domain extension is increased to LbjiX1000D, the solution can be

considered as being grid independent. Deviations of the drag between Lbji ¼ 2000D and 4000D are below 0:1%,

therefore we claim to have reached an asymptotic solution. The drag coefficient from the present work is compared to a

selection of numerical data from literature, as shown in Fig. 3. The locations of the outer boundaries of the different

studies are given in Table 1.

Experimental data are not included because it is not possible to measure very low forces accurately. Although

different boundary conditions have been used in the far-field, the data of Fornberg (1980), Henderson (1995), Lange

(1997) and Yang et al. (1994) fit accurately to the curve from the present work. This supports the presumption that the

boundary condition has a minor influence compared to the domain extension. Only the drag coefficient obtained in

Park et al. (1998) is lower than expected. The small domain extension in the wake of the cylinder (Lo ¼ 20D) could be

the cause of the deviation. Fornberg performed an investigation at Re ¼ 20 concerning the maximal vorticity for

different boundary conditions in the far-field with varied domain extensions. Although only two different grids were
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Table 1

Comparison of domain extensions as used in different numerical works

Li=D Lb=D Lo=D

Behr et al. (1995) 8 4.5–16 22:5
Franke et al. (1990) 20 20 20

Henderson (1995) 16 28 25

Kravchenko et al. (1999) 10–60 10–60 10–60

Lange (1997) 30 30 130

Park et al. (1998) 50 50 20

Persillon and Braza (1998) 9:85 8:23 417

Rosenfeld (1994) 30:5 30:5 30:5
Yang et al. (1994) 200 200 200

Present work 20–4000 20–4000 50
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Fig. 3. Drag coefficient versus domain extension Lbji and order of polynomial basis at Re ¼ 20. Large figure: ’, Fornberg (1980); �,

Henderson (1995); D, Lange (1997); �, Park et al. (1998); �, Yang et al. (1994);&, present work. Inset:’, Lbji ¼ 20D; n, 40D; ,, 70D;

�, 120D; �, 200D; &, 500D; �, 2000D; B, 4000D.
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used to check the resolution, the drag coefficient of CD ¼ 2:0001� 0:0001 perfectly reflects the result of the present

study as shown in Fig. 3. Lange studied the effect of domain extension on the drag at very low Reynolds numbers in

detail, so that the correspondence is excellent. The work of Henderson focused on the Reynolds number dependency of

the drag. Because a rather small rectangular mesh was used (see Table 1), the resulting drag is too high and deviates

slightly from our curve which was generated under the assumption of a semicircular inflow domain. The data of

Yang et al. were generated in order to verify a new numerical concept. Nevertheless, the domain size and number of

grid points were chosen carefully, so that result corresponds accurately to the curve in Fig. 3. A good compromise

between accuracy and effort is made if the outer boundaries are located within the largest curvature of the CD versus
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Lbji curve from Fig. 3. The error in the drag coefficient is lower or equal 1% if an extension of LbjiX70D is used, as

shown in Table 2.

The drag coefficients in dependency on the domain extension are further given in Fig. 4 for Re ¼ 5, 20 and 40. The

domain size is again plotted in logarithmic scale. At Re ¼ 5 the deviation between the drag at Lbji ¼ 20D and 4000D is

about 7%. The diagrams at Re ¼ 20 and 40 are scaled with the 7% error as lower limit of the y-axis. The blockage effect

is increased with decreasing Reynolds number in the steady flow regime as was also shown in Lange (1997). With the

exception of Re ¼ 5, the drag remains nearly constant for LbjiX1000D.

The frictional, pressure, total drag, and the base-pressure coefficients for the different domain extensions are

summarized in Table 2. Deviations from the asymptotic values (eCD
, e�Cpb

), taken from the data at Lbji ¼ 4000D, are

also given in the table. It can be seen again that at Re ¼ 5 and Lbji ¼ 20D the error of the drag coefficient amounts to

about 7% compared to 3:6% at Re ¼ 40. The situation is even worse if the base-pressure coefficient is considered. The

blockage effect increases the base-pressure by 18% at Re ¼ 5 and Lbji ¼ 20D. At Re ¼ 40 the error still amounts to

about 13:5%. As already stated in Section 2, a large error occurs since both the pressure at the rear stagnation point and

the reference pressure are strongly governed by the blockage effect.

The comparison between different numerical results in Fig. 3 showed that the data match accurately the curve of the

present work. Therefore, a polynomial expression of the drag and base-pressure coefficients is given that can be used to

estimate errors caused by blockage effects due to finite domain extensions. The exponential decrease of drag with

increasing location of the outer boundaries Lbji=D is favorably approximated by polynomials with noninteger

exponents as defined in Eq. (10).

C ¼ a0 þ a1ðLbji=DÞ�a2 . (10)

The coefficient C stands for the drag and the base-pressure respectively. Table 3 gives the coefficients of drag and base-

pressure approximations. The coefficient a0 can be used as asymptotic value for very large sizes of the computational
Table 2

Drag and base-pressure versus domain extension in the steady regime

Lbji=D CDp CDf
CD �Cpb

eCD
=ð%Þ e�Cpb

=ð%Þ

Re ¼ 5

20 2.2396 1.9507 4.1904 1.0878 7.17 18.02

40 2.1595 1.8872 4.0467 1.0022 3.50 8.73

70 2.1300 1.8600 3.9915 0.9693 2.09 5.17

120 2.1113 1.8488 3.9601 0.9483 1.28 2.88

200 2.1013 1.8407 3.9420 0.9405 0.82 2.04

500 2.0907 1.8322 3.9229 0.9293 0.33 0.82

2000 2.0846 1.8273 3.9118 0.9229 0.05 0.12

4000 2.0834 1.8264 3.9099 0.9217 0 0

Re ¼ 20

20 1.2552 0.8234 2.0786 0.6188 4.27 14.82

40 1.2259 0.8075 2.0334 0.5765 2.00 6.97

70 1.2151 0.8017 2.0168 0.5609 1.17 4.07

120 1.2093 0.7985 2.0078 0.5524 0.72 2.49

200 1.2059 0.7966 2.0025 0.5475 0.45 1.58

500 1.2024 0.7947 1.9972 0.5424 0.18 0.64

2000 1.2004 0.7936 1.9941 0.5395 0.03 0.10

4000 1.2001 0.7935 1.9935 0.5389 0 0

Re ¼ 40

20 1.0167 0.5317 1.5484 0.5373 3.63 13.47

40 0.9956 0.5230 1.5187 0.5025 1.64 6.12

70 0.9850 0.5200 1.5081 0.4901 0.68 3.48

120 0.9843 0.5183 1.5027 0.4830 0.56 1.99

200 0.9821 0.5174 1.4995 0.4799 0.35 1.33

500 0.9798 0.5165 1.4963 0.4761 0.14 0.53

2000 0.9786 0.5160 1.4945 0.4739 0.02 0.08

4000 0.9784 0.5159 1.4942 0.4736 0 0
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Fig. 4. Drag coefficients versus extension of computational domain for different Reynolds numbers in the steady regime: �;Re ¼ 5;

&;Re ¼ 20; n;Re ¼ 40 (error about 7%, respectively).

Table 3

Polynomial approximation of drag and base-pressure coefficients in the steady regime

Re ¼ 5 Re ¼ 20 Re ¼ 40

CD

a0 3:906566 1:993045 1:493902
a1 4:593203 1:583433 1:493902
a2 0:929342 0:974151 1:021031
e 0:00242 0:00071 0:00051
emax 0:00887 0:00318 0:00210

�Cpb

a0 0:920229 0:538523 0:474423
a1 2:761453 1:407086 1:907100
a2 0:935271 0:960673 1:133408
e 0:00177 0:00077 0:00062
emax 0:0057 0:0027 0:0010
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domain. The mean and maximal deviations (e and emax) between the computed datapoints and the curve-fit are included

as defined in Eqs. (8) and (9), respectively.
4. Asymptotic solution in the unsteady regime

If the Reynolds number exceeds 47, the flow behind a circular cylinder becomes unsteady and a von Kármán vortex

street develops. Computation in this flow regime are more laborious to establish the unsteady flow field. Domain
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extensions Lbji from 20D to 4000D were chosen again to identify the effect of domain size on the integral quantities of

the cylinder flow. The Reynolds number was varied from Re ¼ 50 to 250 within this study. It should be noted that the

flow becomes three-dimensional for Re4190, as shown in Posdziech and Grundmann (2001). The simulations were

restricted to two dimensions, so that this effect cannot be observed here. The drag and lift coefficients as well as the

base-pressure coefficient vary with time because of the unsteady flow regime. Therefore, mean quantities have to be

used. More than 50 shedding cycles were computed to establish the flow in all cases and more than 20 cycles for

averaging the flow quantities. If the flow is established and the resolution is sufficient, then the flow quantities show a

nearly perfect sinusodial behavior for Rep250.

The same procedures as in the steady regime were repeated in order to find grid-independent solutions. Since the flow

structures in the wake are much more complex in the unsteady regime, a rather high Reynolds number of 200 was

chosen to search for the minimal polynomial order. For each domain extension the resolution was improved by

increasing the order of polynomial basis from N ¼ 6 to 12 for Lbjip120D and to N ¼ 14 for Lbji4120D, until the mean

drag coefficient remained constant as shown in Fig. 5 (inset). An order of polynomial basis of N ¼ 12 can be noted as

sufficiently resolved at all sizes of the computational domain. The error that results from an unsufficient resolution is

small compared to the error that is made if the domain extension is too small, if a polynomial order of at least NX8 is

used. In Fig. 5 (large part) the dependency of the domain extension Lbji=D on the mean drag is given and compared to

data from literature. The drag coefficient is taken from simulations with a polynomial order of 12. It should be noted

again that the domain extension has been plotted logarithmically. The drag coefficient of Henderson (1995) fits perfectly

to the curve of the present work, whereas the drag that is given in Lange (1997) is larger than expected. It is supposed

that the resolution was not sufficient for larger Reynolds numbers in his work. Rosenfeld (1994) performed a grid

refinement study with an O-type grid at a fixed size of 60D and with a strong expansion towards the far-field. The given

drag coefficient is slightly smaller than expected, however, the reasons are not clear.

Fig. 6 shows the same two views for the Strouhal number. Both the error from small domain extensions and from an

insufficient resolution are much lower compared to those of the drag coefficient. Data given by Henderson (1995),

Rosenfeld (1994) and Lange (1997) fit perfectly in the given curve. An interesting feature can be seen in the inset of

Fig. 6: if the domain extension is smaller than 100D, the Strouhal number is underestimated if the resolution is not
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Fig. 5. Mean drag coefficient versus domain extension Lbji and order of polynomial basis at Re ¼ 200: Large figure: �, Henderson

(1995); n, Lange (1997); ’, Rosenfeld (1994); &, present work. Inset:’, Lbji ¼ 20D; n, 40D; ,, 70D; �, 120D; �, 200D; &, 500D; �,

2000D; m, 4000D.



ARTICLE IN PRESS

Lb|i /D

C
D

101 102 103

1.25

1.3

1.35

1.4

Fig. 7. Mean drag coefficient versus domain extension Lbji at Re ¼ 100: �, Henderson (1995); n, Lange (1997); �, Park et al. (1998); m,

Kravchenko et al. (1999); ’, Behr et al. (1995); �, Persillon and Braza (1998); &, present work.
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sufficient. The figure exposes why the code validation by means of the Strouhal number is critical. If the Strouhal

number is in a certain range of error, the other quantities do not. And even worse, an insufficient resolution can

decrease the Strouhal number, whereas small domain extensions increase it. Both effects are able to compensate each

other. A comparison of the Strouhal number with data from the literature cannot assure a grid-independent numerical

solution. Flow quantities like the drag and the base-pressure coefficients are considerably more influenced by the

blockage effect and a poor resolution.

Next, Re ¼ 100 is considered, because a larger set of data can be found in the literature at this Reynolds number. The

dependency of the mean drag coefficient on the domain extension is shown in Fig. 7. Kravchenko et al. (1999)

performed a code validation study by means of unsteady cylinder data at Re ¼ 100 in order to investigate the effect of

the domain size. It can be seen that their drag data are strongly scattered. Therefore, it is supposed that, unlike the

present work, a sufficient resolution was not guaranteed simultaneously or the number of shedding cycles that were

used to establish the flow was to low (in some cases only 8 shedding cycles compared to 50 in the present work). A larger

error can also be observed in the data of Persillon and Braza (1998) where the code validation was performed by means

of the Strouhal number. As stated before, it is supposed that a large blockage effect and an insufficient resolution

compensate each other. Data of Behr et al. (1995), Park et al. (1998), Lange (1997) and Henderson (1995) fit perfectly to

our curve according to the domain extensions that were used.

The characteristic flow quantities (Strouhal number, lift, mean drag, and mean base-pressure coefficients) in

dependency on domain extensions at Re ¼ 100 and 200 are summarized in Table 4. Besides that, the percentage

deviation from the asymptotic value at Lbji ¼ 4000D is given. It can be seen that the error is rather similar at Re ¼ 100

and 200 for all flow quantities. This stands in contrast to the steady flow regime, where the error is diminished with

increasing Reynolds number. It should be noted also that the absolute drag decreases strongly with increasing Reynolds

number in the steady regime. The Strouhal number is much less influenced by the blockage effect. If the domain

extension exceeds 200D, then the error is below 1% in all cases. Besides the base-pressure coefficient, the other flow

quantities are satisfyingly reflected for domains as small as Lbji ¼ 70D. In any case, the use of domains that are smaller

than 20D has to be avoided.

Analoguously to the steady case, a curve-fit is given for the relationship between flow quantities and the domain

extension. Again the polynomial approximation of Eq. (10) is applied. Table 5 lists the coefficients of the polynomial for

the drag, lift, Strouhal number, and base-pressure coefficients, together with the mean and maximum deviations as

given in Eqs. (8) and (9). It can be seen that the usage of polynomials with noninteger exponents results in a very

accurate curve-fit because of the exponential decay of flow quantities with increasing domain extension. Even if the

curves are only valid for the semi-circular inflow boundary as used in the present work, data from the literature fit very

well to this representation as can be seen in Figs. 5–7.
Table 4

Characteristic flow quantities versus domain extension in the unsteady regime

Lbji=D St CL CD �Cpb
eStð%Þ eCL

ð%Þ eCD
ð%Þ e�Cpb

ð%Þ

Re ¼ 100

20 0:1667 0:3309 1:3504 0:7448 2:06 4:69 2:91 7:91
40 0:1650 0:3238 1:3321 0:7188 1:05 2:42 1:51 4:15
70 0:1644 0:3210 1:3249 0:7083 0:66 1:56 0:96 2:63
120 0:1640 0:3193 1:3203 0:7014 0:42 1:01 0:61 1:63
200 0:1638 0:3182 1:3175 0:6977 0:27 0:66 0:40 1:09
500 0:1635 0:3170 1:3144 0:6932 0:11 0:27 0:16 0:45
2000 0:1633 0:3162 1:3126 0:6906 0:02 0:04 0:03 0:07
4000 0:1633 0:3161 1:3123 0:6901 0 0 0 0

Re ¼ 200

20 0:1976 0:6880 1:3490 1:0097 1:88 4:02 3:09 6:83
40 0:1962 0:6781 1:3330 0:9843 1:11 2:53 1:87 4:15
70 0:1954 0:6728 1:3251 0:9717 0:75 1:73 1:26 2:82
120 0:1950 0:6691 1:3196 0:9628 0:50 1:16 0:85 1:88
200 0:1946 0:6664 1:3158 0:9567 0:32 0:76 0:55 1:23
500 0:1943 0:6635 1:3116 0:9499 0:13 0:32 0:23 0:51
2000 0:1940 0:6617 1:3090 0:9458 0:02 0:05 0:04 0:08
4000 0:1940 0:6614 1:3086 0:9451 0 0 0 0
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Table 5

Polynomial approximation of flow quantities in the unsteady regime (Eq. (10))

Re ¼ 50 Re ¼ 100 Re ¼ 150 Re ¼ 200 Re ¼ 250

St

a0 0:121691 0:163290 0:182377 0:193909 0:201736
a1 0:070135 0:047697 0:035103 0:032678 0:028323
a2 0:971843 0:880607 0:780594 0:724154 0:641835
e 0:000041 0:000023 0:000015 0:000013 0:000034
emax 0:00014 0:00010 0:00007 0:00003 0:00008

CL

a0 0:048007 0:315945 0:503038 0:659813 0:786065
a1 0:118070 0:189247 0:186956 0:182915 0:211279
a2 0:864397 0:850838 0:740338 0:624851 0:589645
e 0:000090 0:000119 0:000071 0:000147 0:000420
emax 0:00030 0:00039 0:00019 0:00052 0:00095

CD

a0 1:401544 1:311982 1:299216 1:307388 1:325016
a1 0:894291 0:498911 0:368882 0:336582 0:317611
a2 0:962251 0:857583 0:771942 0:696743 0:663560
e 0:000508 0:000229 0:000249 0:000162 0:000319
emax 0:00183 0:00093 0:00062 0:00027 0:00134

�Cpb

a0 0:489992 0:689934 0:827189 0:941818 1:042474
a1 1:215210 0:747739 0:573994 0:481216 0:470695
a2 1:000716 0:872701 0:767476 0:654087 0:606200
e 0:000538 0:000272 0:000194 0:000351 0:000727
emax 0:00183 0:00106 0:00090 0:00114 0:00192

O. Posdziech, R. Grundmann / Journal of Fluids and Structures 23 (2007) 479–499490
A detailed analysis of the effect of resolution (i.e. number of grid points) as well as domain extension was shown in

the previous sections. The grid-independence of the numerical solution is assured for Reynolds numbers between 5 and

250 if the domain size exceeds Lbji41000D. But even for smaller domains, accurate solutions can be obtained if a

certain error in the representation of the flow quantities is accepted. It was further shown that the Strouhal number is

the worst choice if grid independence is verified in numerical simulations. A number of publications suffer from that.
5. Dependency of flow quantities on Reynolds number

In the following, the dependencies of characteristic flow quantities on Reynolds number in the range 10pRep250

are shown. Drag and base-pressure coefficients versus Reynolds number are provided in the steady flow regime. The

mean drag and base-pressure as well as the lift coefficients versus Reynolds number are given in the unsteady case. The

Strouhal number will be treated separately (see Section 6) because of the good comparability to experimental data.

Results of the present work are included with domain extensions of Lbji ¼ 70D, Lo ¼ 50D and Lbji ¼ 4000D, Lo ¼ 50D.

Grids with 186, respectively 396, spectral elements were used. The order of polynomial basis was set to N ¼ 10 and 12.

The computational domain with Lbji ¼ 70D represents a good compromise between accuracy and economics, whereas

the grid with Lbji ¼ 4000D was proven as an asymptotic solution.

Fig. 8 shows the CD versus Re relationship in the steady regime at Reynolds numbers between 10 and 50. It should be

noted that, because of the strong dependency of the drag on Reynolds number under steady flow conditions, the

differences between the data-sets seems to be small within the curve diagram. An exception is the work of Henderson

(1995), where the drag exceeds that of the present work because of the blockage effect. On the other hand, the drag

coefficients that were obtained by Dennis (1976), Lange (1997), Park et al. (1998) and Yang et al. (1994) fit accurately to

the data of the present work. All authors used rather large computational domains (see Table 1) compared to other

investigations that were published and are not included here because of the large deviations. The inset within Fig. 8
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Fig. 8. Drag coefficient versus Reynolds number in the steady flow regime:—, Henderson (1995); �, Dennis (1976); n, Lange (1997); �,

Park et al. (1998); �, Yang et al. (1994); &, present work Lbji ¼ 70D ’, present work Lbji ¼ 4000D.
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zooms in on the Reynolds number dependency of the drag (35pRep50). Here differences between results of the

present work with Lbji ¼ 70D and 4000D as well as to data from the literature can easily be seen. The deviations occur

in accordance to the domain sizes that were used. The reader is referred to Section 3 for a closer insight into the

dependency of the drag on the domain size.

The base-pressure coefficient is even more strongly dependent on the domain size. Therefore, differences between

data of the present work with domain extensions Lbji ¼ 70D and 4000D are larger, as shown in Fig. 9. If the results are

compared to data of Henderson (1995), a nearly constant displacement of his curve due to the smaller computational

domain is noted. Experimental data of Williamson and Roshko (1990) are also included in the figure. However, the

measured results are largely scattered at low Reynolds numbers, so that the comparison is only qualitative.

Next, the dependency of the mean drag coefficient on Reynolds number is shown in the unsteady regime at Re447.

Since the drag variation is smaller compared to the steady case, differences between data from literature and that of the

present work are easily identifiable in Fig. 10. Drag coefficients of Henderson (1995), Park et al. (1998), and both sets of

the present work are nearly parallel in correspondence with the domain extensions that were used in each case. An

exception is the data of Lange (1997) and in particular that of Persillon and Braza (1998). Lange used a domain with

Lbji ¼ 30D for his transient calculations, consequently data are slightly higher. The drag at Re ¼ 200 is very close to

that of present results, probably because of an insufficient resolution. Apparently the number of grid points that were

used by Persillon and Braza was too low to obtain accurate solutions in the unsteady regime. Since they applied a very

small domain extension (see Table 1) the drag should be higher. That the grid was probably not fine enough can be seen

on the plot of the time-dependent drag coefficient in the two-dimensional regime in their Fig. 8. It should be perfect

sinusoidal if the resolution is sufficient.

Unlike the drag, the lift coefficient strongly increases with Reynolds number. As a result, the distance of the von

Kármán vortices from the centerline becomes higher and the effect of low domain extensions is strengthened. The lift

coefficient versus Reynolds number is shown in Fig. 11. Again, differences between the numerical data are difficult to

identify due to the strong change of the lift with increasing Reynolds number. Data of Park et al. (1998) and that of the

present work are nearly identical. For Re4170, the error due to the blockage effect increases as the differences between

both data-sets of the present work indicate. The data of Franke et al. (1990) that are included in Fig. 11 show a lower
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Fig. 9. Base-pressure coefficient versus Reynolds number in the steady flow regime: —, Henderson (1995); m, Williamson and Roshko

(1990); &, present work Lbji ¼ 70D ’, present work Lbji ¼ 4000D.
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Fig. 10. Mean drag coefficient versus Reynolds number in the unsteady flow regime: —, Henderson (1995); &, Lange (1997); ’, Park

et al. (1998); �, Persillon and Braza (1998); �, present work Lbji ¼ 70D; �, present work Lbji ¼ 4000D.
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Fig. 11. Lift coefficient versus Reynolds number in the unsteady flow regime: ,, Franke et al. (1990); ’, Park et al. (1998); �, present

work Lbji ¼ 70D; �, present work Lbji ¼ 4000D.
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lift coefficient than expected from the domain extension as given in Table 1. An insufficient resolution is mostly the

cause of such a deviation.

The Reynolds number dependency of the mean base-pressure coefficient (see Fig. 12) clearly indicates the effect of the

domain size. Data of Henderson (1995) and of the present work are nearly parallel. Since the domain extension of

Henderson was much smaller (see Table 1) compared to Lbji ¼ 70D and 4000D as used in the present work, the data-

sets deviate as was already shown in Section 4. The data-point of Persillon and Braza (1998) at Re ¼ 100 is strongly

affected by the small computational domain as well as by the definition of base-pressure coefficient that was used in

their study. Experimental results of Williamson and Roshko (1990) and Norberg (1994) are included in Fig. 12. The

data fit accurately to that of the present work up to a Reynolds number of about 170. At higher Reynolds numbers

measurements are governed by the formation of three-dimensional modes in the wake of the circular cylinder

(Posdziech and Grundmann, 2001). It should be noted that the experimental data slightly shift to higher base-pressures

compared to the numerical results. But it has to be kept in mind that the experimental arrangements are influenced by

blockage effects, because of the limitations of the wind or water channels, and by end effects since the cylinder that is

used is not infinitely long. Further, the accurate measurement of very low pressures is difficult to perform. Even the size

of the boreholes has an effect on the pressure output.

Finally, the Reynolds number dependency of drag, lift, and base-pressure coefficients are given as polynomial

approximations. In the case of the steady flow (Reo47) an approximation with noninteger polynomials as given in Eq.

(10) performed best with lowest mean e (see Eq. (8)) and maximal deviations emax (Eq. (9)) compared to approximations

with integer polynomials of different order. The fit is valid for a Reynolds number range of 5pRep50. The coefficients

of the polynomial are summarized in Table 6 for Lbji ¼ 70D as well as Lbji ¼ 4000D.

The flow quantities in the unsteady flow regime (50pRep250) are approximated successfully by a fifth order

polynomial,

C ¼ a0 þ a1
Lbji

D
þ a2

Lbji

D

� �2

þ a3
Lbji

D

� �3

þ a4
Lbji

D

� �4

þ a5
Lbji

D

� �5

. (11)
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Fig. 12. Mean base-pressure coefficient versus Reynolds in the unsteady flow regime: —, Henderson (1995); �, Persillon and Braza

(1998); n, Williamson and Roshko (1990); ,, Norberg (1994); �, present work Lbji ¼ 70D; �, present work Lbji ¼ 4000D.

Table 6

Polynomial approximation of the Reynolds number dependencies in the steady regime (Eq. (10))

Lbji ¼ 70D Lbji ¼ 4000D

CD �Cpb
CD �Cpb

a0 0:5345136 0:4098829 0:5076150 0:4137402
a1 9:2441768 2:5526812 8:8648267 2:5915967
a2 0:6110109 0:9436754 0:5954448 1:0124978
e 0:00326 0:00222 0:00275 0:00220
emax 0:01239 0:00836 0:01369 0:00532
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The related coefficients are given for both Lbji ¼ 70D and 4000D in Table 7. The correspondence of the drag and the

base-pressure approximations with the numerical data is excellent, whereas the mean and maximal deviations are

slightly higher (in the order of 1� 10�3) in the case of the lift coefficient.

If the Reynolds number exceeds a critical value ReC , the stationary flow, characterized by two symmetrical vortices in

the near wake, passes into a time-dependent flow regime and it develops the well-known von Kármán vortex street. This

primary instability of the cylinder flow results from a global Hopf bifurcation of the steady flow. A critical Reynolds

number ReC ¼ 46:7� 0:1 has been obtained from the intersection of the steady and transient drag curves. It agrees well

with results of a stability analysis by Jackson (1987) giving ReC ¼ 46:184, as well as experiments by Provansal et al.

(1987) where ReC ðL=D!1Þ ¼ 47, Leweke and Provansal (1995) with ReC ¼ 46:8, and Norberg (1994) as well as Fey

(1998) with ReC 	 47. The critical Reynolds number of the primary instability can be viewed as exactly reproducible

with both experimental and numerical means.
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Table 7

Polynomial approximation of the Reynolds number dependencies in the unsteady regime (Eq. (11))

CD CL �Cpb

Lbji ¼ 70D

a0 1:70116 �0:621939 0:0355849
a1 �8:8129� 10�3 2:183� 10�2 1:4888� 10�2

a2 7:706� 10�5 �2:2733� 10�4 �1:4643� 10�4

a3 �3:3247� 10�7 1:4224� 10�6 8:8359� 10�7

a4 7:369� 10�10 �4:402� 10�9 �2:6547� 10�9

a5 �6:6816� 10�13 5:2702� 10�12 3:109� 10�12

e 0:00017 0:00100 0:00064
emax 0:00085 0:00328 0:00216

Lbji ¼ 4000D

a0 1:68474 �0:627192 0:0232106
a1 �8:7685� 10�3 2:1989� 10�2 1:4688� 10�2

a2 7:775� 10�5 �2:3043� 10�4 �1:4304� 10�4

a3 �3:4396� 10�7 1:4446� 10�6 8:56329� 10�7

a4 7:8551� 10�10 �4:4791� 10�9 �2:56552� 10�9

a5 �7:3668� 10�13 5:3718� 10�12 3:00309� 10�12

e 0:00024 0:00114 0:000833
emax 0:00093 0:00334 0:002374
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6. Strouhal–Reynolds number relationship

The determination of the St versus Re relationship at low Reynolds numbers preoccupied experimentalists for more

than five decades. Roshko (1954), Tritton (1959), Berger (1964), Williamson (1989), Williamson (1992), Norberg (1994),

Leweke and Provansal (1995), Fey (1998) and others published data in the two-dimensional regime up to

Re 	 170; . . . ; 180. Beginning with Williamson’s (1989) work, the curves show a nearly perfect agreement if parallel

vortex shedding is forced. This has been achieved by a proper choice of measurement conditions, such as the usage of

end-plates to avoid oblique vortex shedding, a large cylinder length-to-diameter ratio and a simultaneous suppression

of cylinder vibrations. The vortex shedding frequency and with it the Strouhal number can be measured easily and

accurately compared to the base-pressure coefficient or the forces that act on the cylinder. In order to enforce parallel

vortex shedding, different means are used: Wiliamson, Norberg and Fey used end-plates, whereas Leweke and

Provansal measured the vortex shedding frequency on a ring that simulates an infinitely long circular cylinder. The

utilization of end-plates carries the risk that the flow quantities are affected by the tilting angle (Posdziech and

Grundmann, 2001) so that the experimental results are not independent from the experimental set-up.

On the numerical side, data-sets of the Strouhal–Reynolds number relationship are found in among others Lange

(1997) and Henderson (1997). A number of data are given in Persillon and Braza (1998) and therefore included in the

present paper. Results of the present work were obtained with domain extensions of Lbji ¼ 70D, Lo ¼ 50D and

Lbji ¼ 4000D, Lo ¼ 50D, 186 (respectively 396) spectral elements and an order of polynomial basis of N ¼ 10 as well as

N ¼ 12. The St versus Re relationship in the two-dimensional regime is shown in Fig. 13. Results are compared to

experimental and numerical data from literature. Since the curves run closely together, it can be stated that the Strouhal

number is exactly reproducible by experimental as well as numerical means. However, it has to be taken into account

that the Strouhal number is much less sensitive to errors due to an insufficient resolution or blockage effects, as already

pointed out in Section 4. In order to illustrate differences in the results, a segment of Fig. 13 for 100pRep170 is

displayed in Fig. 14. The numerical results that were taken from literature were computed by using smaller domains

compared to that of the present work. Therefore, the Strouhal–Reynolds number dependency that was obtained by

Henderson (1997) is located consistently above the results of the present work due to a higher blockage. Data of Lange

(1997) show the expected progression only at Rep100. As already discussed in Section 4, there seems to be an

underresolution at higher Reynolds numbers, so that the Strouhal number decreases in comparison to that of the

present work. The Strouhal number that was obtained by Persillon and Braza (1998) at Re ¼ 100 fits accurately to the

measured data, but stands in contradiction to the used domain size. At Re ¼ 150 the Strouhal number is under- and at

Re ¼ 200 overestimated. It has been stated before that the resolution was probably not sufficient for an accurate

determination of the Strouhal number.
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Fig. 13. Strouhal–Reynolds number relationship: —, Henderson (1997); &, Lange (1997); �, Persillon and Braza (1998); �, present

work Lbji ¼ 70D; �, present work Lbji ¼ 4000D (all numerics); � � � � � � � � �, Fey (1998); ������, Leweke and Provansal (1995);

� � � � �, Norberg (1994); n, Williamson (1989) (all experiments).
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Fig. 14. Strouhal–Reynolds number relationship at 100pRep170: —, Henderson (1997); &, Lange (1997); �, Persillon and Braza

(1998); �, present work Lbji ¼ 70D; �, present work Lbji ¼ 4000D (all numerics); � � � � � � � � �, Fey (1998); ������, Leweke and

Provansal (1995); � � � � �, Norberg (1994); n, Williamson (1989) (all experiments).
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The experimental data that are included in Figs. 13 and 14 are given as polynomial approximations in literature:

St ¼ 0:2684� 1:0356=
ffiffiffiffiffiffi
Re
p

in Fey (1998), St ¼ �3:669=Reþ 0:1861þ 0:0001432Re in Leweke and Provansal (1995),

and St ¼ �3:458=Reþ 0:1835þ 1:51� 10�4Re in Norberg (1994). An exception are the results of Williamson (1989)

that are included directly. All curves fit together within the accuracy of measurement errors. However, it should be

noted that the lower Strouhal numbers have been obtained by using large length-to-diameter ratios (L=D) of the

cylinder. Logically Norberg (L=D up to 2000) and Leweke and Provansal (measurements on a ring in order to avoid

end-effects) got the lower border of results, as shown in Fig. 14. Nevertheless the measurements and data of the present

work are placed very close together. Taking the data of Fey as the upper border and of Leweke and Provansal as the

lower border, the error amounts to about 0:7% at most Reynolds numbers. The scatter of experimental results is larger

only for Reo60. Note that the experimental curves drop for Re 	 180 because of the transition to three-dimensionality

and deviate from two-dimensional numerical results (Posdziech and Grundmann, 2001). Fey (1998) could sustain a

two-dimensional cylinder flow up to Re 	 230 by means of two thin wires, tightened parallel to the cylinder axis at

x=D ¼ 1:05, f ¼ �174�. His measurements confirm the two-dimensional calculations for Re4180.

The Strouhal–Reynolds number relationship is usually given in the literature in the form of curve-fits. Roshko (1954)

used the correlation St ¼ 0:212þ 4:5=Re. Later, different authors published similar representations by variation of the

coefficients. A detailed summary of definitions and discussion of accuracy can be found in Williamson and Brown

(1998). Traditionally, polynomial approximations with two and three terms were used. Later, Williamson (private

communication) and Fey (1998) proposed a fit with a square-root expansion St ¼ a0 þ a1=
ffiffiffiffiffiffi
Re
p

. Fey plotted his data in

the form Stð1=
ffiffiffiffiffiffi
Re
p
Þ, so a straight line was obtained in the St versus Re dependency. Tests with measurements of

Williamson and the present data show consistent deviations from that curve, supporting a more complex law.

Williamson and Brown (1998) executed a series expansion in 1=
ffiffiffiffiffiffi
Re
p

and truncated the series after the third term to

obtain a three-term St–Re relation.

Following the work of Williamson and Brown, data of the present work are fitted to the traditional and square-root

expansions for 50pRep250. Furthermore, a new law is proposed using noninteger polynomials:

St ¼ a0 þ a1Re�a2 . (12)

The present numerical data have negligible variations compared to the scatter in measurements, therefore curve-fits are

easier to perform. Table 8 lists the expansions and generated coefficients together with the average error e and the

maximum error emax as defined in Eq. (8) as well as Eq. (9) and used in Williamson and Brown (1998). The coefficients

are determined at a domain size of Lbji ¼ 70D, since the results are very smooth here. Compared are polynomials with

two and three terms in traditional form, square-root expansions and the usage of noninteger polynomials. The

definitions are included in Table 8.
Table 8

Comparison of St versus Re curve-fits for 50pRep250 and Lbji ¼ 70D

Curve-fit Coefficients e emax

2-term traditional a0 ¼ 0:218673 2:94� 10�3 6:50� 10�3

St ¼ a0 þ
a1

Re
a1 ¼ �4:7961

3-term traditional a0 ¼ 0:189629 4:93� 10�4 1:51� 10�3

St ¼ a0 þ
a1

Re
þ a2 Re a1 ¼ �3:6439

a2 ¼ 1:2� 10�4

2-term square root a0 ¼ 0:267892 3:83� 10�4 8:61� 10�4

St ¼ a0 þ
a1ffiffiffiffiffiffi
Re
p a1 ¼ �1:0263

3-term square root a0 ¼ 0:276052 6:25� 10�5 4:90� 10�4

St ¼ a0 þ
a1ffiffiffiffiffiffi
Re
p þ

a2

Re
a1 ¼ �1:1965
a2 ¼ 0:79547

2-term noninteger polynomial a0 ¼ 0:284397 5:76� 10�5 3:82� 10�4

St ¼ a0 þ a1Re�a2 a1 ¼ �0:870566
a2 ¼ 0:4304
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The mean as well as the maximum errors decrease from the top to the bottom of the table. The square-root expansion

outmatches the traditional forms, as already shown in Fey (1998) and Williamson and Brown (1998). The addition of a

third term by Williamson and Brown again improves the accuracy of the polynomial fit. The two-term noninteger

polynomial fits best to data of the present work in the scope concerned. The formulation is rather simple and could

therefore be preferred in order to validate numerical as well as experimental results. If the noninteger polynomial is

applied to the asymptotic solution at Lbji ¼ 4000D, the following equation results:

St ¼ 0:278484� 0:896502Re�0:445775. (13)

Eq. (13) is valid for 50pRep250. However, it should be noted that experimental results drop at Re 	 170–180 because

of the development of three-dimensional modes.

7. Conclusions

The flow around an infinitely long circular cylinder, in the center of interest for more than one century, still raises many

questions. A large scatter in numerical data was obtained even in the ‘simple’ two-dimensional, laminar regime. The

deviations are mostly caused by a grid dependency of solutions. In the present work a spectral element method was used to

show how fundamental quantities like drag, lift, base-pressure coefficient, and Strouhal number can be computed

consistently by varying both the resolution and the domain extension so that experimental results are confirmed within the

range of measurement errors. Furthermore, the scatter in previous numerical data could be largely assessed.

Different computational domains with extensions from Lbji ¼ 20D up to Lbji ¼ 4000D were used to obtain

asymptotic solutions in the steady and unsteady flow regime. Holding the domain size constant, the order of polynomial

basis was increased until the solution does not change anymore. It was shown that the domain extension governs the

accuracy of numerical results. Studies at different Reynolds numbers in the steady and unsteady flow regime allowed

the evaluation of blockage effects in terms of integral quantities of the cylinder flow. The Strouhal number, frequently

used for a comparison between numerics and experiments, is less affected by errors introduced by blockage and

resolution shortcomings. The flow forces and the base-pressure coefficient turned out to be more stringent criteria for

the investigation of grid independence. Most numerical works, that turned out to be inaccurate, used the Strouhal

number for the verification of the computational grid. The results are useful for similar investigations in order to

estimate the error that has to be taken into account by finite computational domains. For that, the dependency of the

flow quantities on the domain extension was given as curve-fit using noninteger polynomials.

Reynolds number relationships of drag and base-pressure coefficients in the steady flow regime and in addition

Strouhal number and lift coefficient in the unsteady range were computed at domain extensions of Lbji ¼ 70D and

4000D. The first domain size represents a compromise between accuracy and expenditure, whereas the latter describes

the asymptotic solution. All Reynolds number dependencies are given as polynomial approximations. In the case of the

Strouhal number, different representations are discussed and compared to the literature. From the intersection of

steady and unsteady Reynolds number relationships, the critical Reynolds number of the primary instability was

determined to ReC ¼ 46:7 in perfect correspondence to experimental and numerical data.

The computation of drag and lift coefficients on bluff bodies like circular cylinders, buildings in environmental fluid

mechanics, or even cars requires large computational domains to minimize blockage effects. The present work shows

that a very careful validation of the numerical grid, both in terms of resolution and domain size, is necessary to obtain

grid-independent solutions. If this is done, a perfect agreement between numerical and experimental data can be

obtained, at least in the laminar flow regime.
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